Author:
Hakimelahi Hamid Reza,Sotudeh-Gharebagh Rahmat,Mostoufi Navid
Abstract
A mathematical model is proposed for the partial oxidation on n-butane to maleic anhydride (MAN) in a gas-solid fluidized bed reactor. The reactor consists of two regions, i.e., a lower dense region and an upper dilute region. The dynamic two-phase structure was used for modeling the lower dense bed hydrodynamics. The upper region hydrodynamics was modeled by a cluster based approach. This allows the porosity distribution to be calculated for plug flow reactor model assumed for the gas phase in this region. The basic assumption in the cluster based approach is that the solid particles move only as clusters and the amount of single particles in the upper region is negligible. The mathematical model was obtained from coupling the kinetic sub-model, obtained from the literature, with this hydrodynamics sub-model. Comparing the results of the model with the experimental data available in the literature showed close agreement. Two other methods (i.e., particle based approach and short-cut) were also tested in this work. However, it was found that the cluster based approach modeling is quite suitable for the fluidized bed reactor used in this study. The short-cut method seems reasonably applicable for the prediction of the overall conversion but does not provide any local information (such as concentration profiles, yield, etc.) within the fluidized bed reactor.
Subject
General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献