Author:
Piña Juliana,Bucalá Verónica,Schbib Noemí Susana,Ege Paul,de Lasa Hugo Ignacio
Abstract
This study reports a comprehensive multiphase gas-solid dynamic mathematical model that successfully describes the batch growth of silicon particles in a CVD submerged spouted bed reactor. This multiphase reactor model takes into account the hydrodynamics and interphase mass exchange between the different fluidized bed regions (spout or grid zone, bubbles and emulsion phase) and uses applicable kinetic rate models to describe both heterogeneous and homogeneous reactions. The model also incorporates a population balance equation representing particle growth and agglomeration.The CVD submerged spouted bed reactor operation is simulated by means of a sequential modular procedure, which involves the solution of the reactor model and the population balance equation.It is shown that the proposed CVD multiphase reactor model successfully simulates experimental data obtained from batch operation in a pilot scale reactor at REC Silicon Inc. The modeling of experiments obtained for different operating conditions allows correlating the scavenging factor as a function of the silane concentration for short- and long-term operations.
Subject
General Chemical Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献