Digital X-ray Imaging Technique to Study the Horizontal Injection of Gas-Liquid Jets into Fluidized Beds

Author:

Ariyapadi Siva,Holdsworth David W.,Norley Chris J.D.,Berruti Franco,Briens Cedric

Abstract

Gas-liquid jets injected into fluidized beds of particles/catalyst find applications in many industrial processes. The effective distribution and mixing of the feed droplets with the entrained bed particles is vital in improving the process efficiency. The present study utilizes a sophisticated digital X-ray imaging system to study the internal flow structure of jets injected into fluidized beds. The system is equipped with an X-ray image intensifier (XRII) and optical detectors, which convert the transmitted X-ray photons into digital images of up to 60 frames s-1. The imaging technique provides useful information such as the jet expansion angle and the penetration distance. These are functional quantities in optimizing the performance of feed nozzles, and in modeling the jet-fluidized bed interactions.In this work, the horizontal injection of gas, gas-liquid, and liquid jets into fluidized beds is investigated. The results indicate that the jet expansion (half-angle) is considerably reduced for a gas-liquid jet (5-7 degrees) when compared to that of a gas jet (10-15 degrees). The gas-liquid jet also appears to penetrate more than a gas jet with the same momentum. When a liquid feed is introduced into a fluidized bed of particles, the particles may agglomerate if they are wet-enough to form liquid bridges. Improper feed distribution may be a direct contributor to enhanced agglomeration. In this regard, radio-opaque tracers mixed with the feed liquid are injected to track the formation and the movement of agglomerates. The tracer experiments show that the agglomerates are generated at the end of the jet region, close to its maximum penetration distance. A brief discussion on the modifications required to achieve improved contrast for the acquired images, and the effect of some important X-ray parameters are also included in the present study.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3