Hydrodynamic Characterization of an Electrochemical Cell with Rotating Disc Electrode: A Three-Dimensional Biphasic Model

Author:

Real-Ramirez Cesar A,Miranda-Tello Raul,Hoyos-Reyes Luis F,Gonzalez-Trejo Jesus I

Abstract

Electrochemical cells with a rotating disc electrode are the preferred devices to characterize electrochemical reactions because simple analytical expressions can be used to interpret the information obtained from physical experiments. These equations assume that the velocity field in the vicinity of the electrode active face is in accordance with the ideal behavior described by von Kármán. Experimental liquid velocity measurements inside the cell reported in recent works suggest that the actual liquid flow pattern is not fully in accordance with the assumed ideal behavior. In this work, the Computational Fluid Dynamics technique was employed to characterize numerically the flow pattern inside the electrochemical cell. By using a three-dimensional model, symmetric conditions were not imposed. A biphasic system was employed to evaluate the influence of liquid free surface over the flow pattern. Unsteady state numerical simulations were performed using the commercial software Fluent. Multiple electrode rotation speeds and several cell sizes were employed. Contrary to the assumed behavior, it was obtained that the flow pattern inside the electrochemical cell is not symmetric due to the synergetic effect of the cell walls, the submerged electrode side wall and the liquid free surface. This work states that the differences between actual and the ideal flow patterns can be minimized with plain electrode and cell geometrical modifications.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3