Bioenergy II: Modeling and Multi-Objective Optimization of Different Biodiesel Production Processes

Author:

Di Nicola Giovanni,Moglie Matteo,Pacetti Marco,Santori Giulio

Abstract

One of the most promising renewable fuels proposed as an alternative to fossil fuels is biodiesel. The competitive potential of biodiesel is limited by the price of vegetable oils, which strongly influences the final price of biofuels. An appropriate planning and design of the whole production process, from the seed to the biodiesel end product, is essential in order to contain the fallout of energy inefficiencies in the high price of the end product. This study focuses on the characteristics of the production process currently used to produce biodiesel.Refined vegetable oil can be converted into biodiesel by means of a great variety of techniques and technologies, many of which are still not suitable for application on an industrial scale. The solution of greatest interest is homogeneous alkaline transesterification with KOH and methanol. Even when dealing with this type of conversion, it is impossible to establish a universal pattern to describe the conversion or purification stages because there are various possible solutions that make each system different from another. When we look more closely at the state of the art in industrial biodiesel production plants, we also encounter the potential problems introduced by the type and characteristics of the raw materials.Comparing some of the reference solutions that have inspired numerous installations, an optimization analysis was conducted using ASPENPLUS 2006, for the modeling of the process, and modeFRONTIER 4.1 for the optimization procedure. The optimization analysis was carried out using a multi-objective genetic algorithm optimization in order to define the configuration of the main parameters that guarantee the best trade-off between the maximization of the purity of some important compounds and the minimization of energy requirements in the process. The results of this analysis were Pareto frontiers that identify a family of configurations which define the best trade-off between the objectives. Using the Pareto frontiers we then selected the configuration that requires the minimum energy consumption. Among these optimal configurations there is one which guarantees the lowest specific energy consumption while all the optimal configurations obtained respected the requirements of EN 14214, in terms of biodiesel quality.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3