Biomass Gasification in Supercritical Water -- A Review

Author:

Basu Prabir,Mettanant Vichuda

Abstract

Supercritical water possesses a number of important characteristics that make it suitable for oxidation, synthesis and gasification reactions. It is especially advantageous for very wet biomass whose gasification in this medium avoids the large expense of energy required for drying. Although the process is in laboratory scale it has a great potential for production of hydrogen and other gases from biomass. This paper reviews the present state of the art and summarizes major observations arrived at in small scale laboratory flow and batch reactors. Effects of operating parameters like, pressure, temperature, etc., on the yield and conversion are discussed. Catalysts appear to play an important role in increasing the conversion rate and decreasing the reaction temperature for gasification. Heat recovery from the product stream holds key to making the gasification process auto-thermal. Heat exchanger efficiency, therefore, plays an important role in this process. Several investigators have used the equilibrium model and exergy analysis for thermodynamic analysis of supercritical gasification plants. Energy efficiency of such a plant could be around 50%.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3