Low-Carbon Monoxide Hydrogen by Sorption-Enhanced Reaction

Author:

Harrison Douglas P,Peng Zhiyong

Abstract

Hydrogen is an increasingly important chemical raw material and a probable future primary energy carrier. In many current and anticipated applications the carbon monoxide impurity level must be reduced to low-ppmv levels to avoid poisoning catalysts in downstream processes. Methanation is currently used to remove carbon monoxide in petroleum refining operations while preferential oxidation (PROX) is being developed for carbon monoxide control in fuel cells. Both approaches add an additional step to the multi-step hydrogen production process, and both inevitably result in hydrogen loss. The sorption enhanced process for hydrogen production, in which steam-methane reforming, water-gas shift, and carbon dioxide removal reactions occur simultaneously in the presence of a nickel-based reforming catalyst and a calcium-based carbon dioxide sorbent, is capable of producing high purity hydrogen containing minimal carbon monoxide in a single processing step. The process also has the potential for producing pure CO2 that is suitable for subsequent use or sequestration during the sorbent regeneration step. The current research on sorption-enhanced production of low-carbon monoxide hydrogen is an extension of previous research in this laboratory that proved the feasibility of producing 95+% hydrogen (dry basis), but without concern for the carbon monoxide concentration. This paper describes sorption-enhanced reaction conditions – temperature, feed gas composition, and volumetric feed rate – required to produce 95+% hydrogen containing low carbon monoxide concentrations suitable for direct use in, for example, a proton exchange membrane fuel cell.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3