Bioenergy II: Biomass Valorisation by a Hybrid Thermochemical Fractionation Approach

Author:

de Wild Paul J.,den Uil Herman,Reith Johannes H.,Lunshof Anton,Hendriks Carlijn,van Eck Ernst R.H.,Heeres Erik J.

Abstract

The need for green renewable sources is adamant because of the adverse effects of the increasing use of fossil fuels on our society. Biomass has been considered as a very attractive candidate for green energy carriers, chemicals and materials. The development of cheap and efficient fractionation technology to separate biomass into its main constituents is highly desirable. It enables treatment of each constituent separately, using dedicated conversion technologies to get specific target chemicals. The synergistic combination of aquathermolysis (hot pressurised water treatment) and pyrolysis (thermal degradation in the absence of oxygen) is a promising thermolysis option, integrating fractionation of biomass with production of valuable chemicals. Batch aquathermolysis in an autoclave and subsequent pyrolysis using bubbling fluidised bed reactor technology with beech, poplar, spruce and straw indicate the potential of this hybrid concept to valorise lignocellulosic biomass. Hemicellulose-derived furfural was obtained in yields that ranged from 2 wt% for spruce to 8 wt% for straw. Hydroxymethylfurfural from hemicellulose was obtained in yields from 0.3 wt% for poplar to 3 wt% for spruce. Pyrolysis of the aquathermolised biomass types resulted in 8 wt% (straw) to 11 wt% (spruce) of cellulose-derived levoglucosan. Next to the furfurals and levoglucosan, appreciable amounts of acetic acid were obtained as well from the aquathermolysis step, ranging from 1 wt% for spruce to 5 wt% for straw. To elucidate relations between the chemical changes occurring in the biomass during the integrated process and type and amount of the chemical products formed, a 13C-solid state NMR study has been conducted. Main conclusions are that aquathermolysis results in hemicellulose degradation to lower molecular weight components. Lignin ether bonds are broken, but apart from that, lignin is hardly affected by the aquathermolysis. Cellulose is also retained, although it seems to become more crystalline, probably due to a higher ordering of amorphous cellulose when the samples are cooled down after aquathermolysis. These NMR results are in agreement with thermogravimetric analyses results.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3