Automatic Fault Detection in Industrial Smart Grids Using KNN and Ensemble Classifiers

Author:

M. Venkata Subbarao1ORCID,G. Challa Ram1ORCID,D. Ramesh Varma1ORCID,D. Girish Kumar1ORCID,M. Prema Kumar1ORCID

Affiliation:

1. Shri Vishnu Engineering College for Women

Abstract

The use of sensitive electrical gadgets in industries, buildings, smart cities, and homes has increased drastically in recent years. PQ events such as interruptions, surges, and sags have a high impact on these sensitive devices. The failure of these delicate devices in real-time applications, particularly smart applications, may result in significant damage. The supply quality decreases because of the failure of internal transmission system elements, unbalanced loads, and other outdoor issues such as like weather. Several academics have proposed techniques to analyze these PQ disturbances, including wavelet packets, S-transform, rough sets and neural networks. In all the available algorithms, the classification procedure involves the extraction of a large set of features from the transformed outputs, training the classifier, and finally making a conclusion with the classifier. Because of the involvement of a large number of features, the computational cost of all these methods increases. To reduce complexity and enhance classification efficiency, the proposed method focuses on extracting fewer low-complexity wavelet features from signals. Pattern recognition (PR) methods, such as the wide variety of K-nearest neighbors (KNN) and ensemble classifiers, are used to classify PQ events in this study. The performance of the proposed ML approaches' performance is evaluated at various training and testing rates. Subsequently, the performance of the proposed strategies was compared to that of the current methods to determine the dominance of the proposed approaches.

Funder

Na

Publisher

El-Cezeri: Journal of Science and Engineering

Subject

General Physics and Astronomy,General Engineering,General Chemical Engineering,General Chemistry,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3