Solar radiation performance adjusting to PV system

Author:

SOFİU Vehebi1,SOFİU Muhaxherin,GASHİ Sami2

Affiliation:

1. UBT- Higher education institution

2. UBT University for Business and Technology

Abstract

The first section of this paper presents the conditions of solar radiation orientation in Kosovo. The sheer existence of the sunlight is indeed an inexhaustible source of renewable energy having ample potential to meet all humankind’s needs for it when innovative technology is used in compliance with modern standards appropriate to economic and social environment and to the nature itself, too. The research conducted for the purpose of the present paper reveals that the greatest amount of radiant energy is focused on the absorber of the collector sensor which transmits the entire moving space at right angles to the sunlight. It is important to note that the collector angle in relation to the horizontal plane cannot be less than 20°, because there is a possibility that the collector, due to the small angle, is covered in dirt and aerosol pollution. These data ensure that best performance in high generation efficiency is reached by improving harnessing patterns in solar cell response. The objective of the Kosovo Plan in 10 years’ period has stimulated the support policy for renewable energy sources, set to be at least 10% at the national level. This paper examines radiation efficiency assessments under sensor monitoring over the absorption space where all time, high absorption power PV system panels are located. Experimental study shows that Kosovo has radiation potential due to its Geographical position equal to 1400kWh, with the optimal sensor orientation angle of 25° in the Gjakova Region. The solar radiation efficiency for one-year period has resulted in increased performance under sensor monitoring during the months of March - September, from 0.89 kWh/m2/y to 0.92 kWh/m2/y, when the equinox provides the longest sunlight intervals.

Publisher

El-Cezeri: Journal of Science and Engineering

Subject

General Physics and Astronomy,General Engineering,General Chemical Engineering,General Chemistry,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3