BERT ile Kazak Haber Veri Kümesinden Anahtar Kelime Çıkarımı

Author:

ABİBULLAYEVA Aiman1,ÇETİN Aydın1

Affiliation:

1. GAZI UNIVERSITY, FACULTY OF TECHNOLOGY, DEPARTMENT OF COMPUTER ENGINEERING

Abstract

Keywords provide a concise and precise description of the document's content. Due to the importance of the keyword and the difficulty of manual markup, automatic keyword extraction makes this process easy and fast. In this paper, Keyword Extraction from Kazakh News Dataset was presented. Model performance results were obtained by using the BERT base - uncased and BERT-base-multilingual-uncased pre-trained language model for the newly compiled Kazakh News Dataset-KND. Compiled Kazakh news data set consists of 7060 data. Data were collected from the web pages anatili.kazgazeta.kz, Bilimdinews.kz, and zhasalash.kz using the BeautifulSoap and Requests libraries. These web pages mostly contain news, history, and literary texts. The dataset includes the publication name or news title, the author of the publication or news subject, and the URL of the Kazakh news site. In the evaluation of the training results, it was observed that the BERT base-multilingual-uncased F-score performance was higher than the BERT model.

Publisher

El-Cezeri: Journal of Science and Engineering

Subject

General Physics and Astronomy,General Engineering,General Chemical Engineering,General Chemistry,General Computer Science

Reference14 articles.

1. [1]. Birdevrim, S. A., Boyacı, A., Al Thani, D. A. S., “İyileştirilmiş otomatik anahtar kelime çıkarımı (BRAKE).” İstanbul Ticaret Üniversitesi Teknoloji ve Uygulamalı Bilimler Dergisi. 2018, 1(1): 11-19.

2. [2]. Siddiqi, S., Sharan, A., “Keyword and keyphrase extraction techniques: a literature review”. International Journal of Computer Applications, 2015, 109 (2).

3. [3]. Bekbulatov, E., Kartbayev, A., “A study of certain morphological structures of Kazakh and their impact on the machine translation quality”. In: 2014 IEEE 8th International Conference on Application of Information and Communication Technologies (AICT), 2014, 1-5.

4. [4]. Myrzakhmetov, B., Kozhirbayev, Zh., “Extended language modeling experiments for kazakh.” the proceedings of 2018 International Workshop on Computational Models in Language and Speech, 2018.

5. [5]. Nugumanova, A., Mansurova, M., “Tabigi til matinderindegi terminderdi avtomatti turde tanu” Monografiya, Oskemen, ShQMU, 2019.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3