Missing IoT Data Prediction with Machine Learning Techniques

Author:

AZİZOĞLU Fatma1,ÜNSAL Emre1

Affiliation:

1. SİVAS CUMHURİYET ÜNİVERSİTESİ

Abstract

Every day, the amount of data generated by industrial applications based on the Internet of Things (IoT) grows. However, data acquired as a result of failures and communication disconnections in IoT devices might be noisy, inaccurate, and incomplete. These issues have become crucial for data production, quality, processing, and analysis. The datasets used in the scope of this study were collected in real-time from the water neutralizer system of Sivas Numune Hospital, which converts medical waste into household waste. Medical liquid wastes in hospitals are exposed to chemical neutralization process by means of pH change with neutralization devices before being transferred to the sewer. In this regard, the monitoring of pH levels in the medical waste neutralization system is crucial for environmental protection. In this aspect, two datasets with varying quantities of missing data were evaluated for the prediction of the PH using the linear regression (LR), support vector machines (SVM), k-nearest neighbor (KNN), random forest (RF), and decision tree (DT) machine learning algorithms. Mean absolute error (MAE), mean squared error (MSE), and root mean square error (RMSE) performance metrics were used to evaluate machine learning algorithms. As a consequence of the analysis, it was determined that the SVM algorithm performed better performance on the two distinct datasets. The result of the evaluation indicates that machine learning algorithms are remarkably efficient at predicting missing pH data.

Publisher

El-Cezeri: Journal of Science and Engineering

Subject

General Physics and Astronomy,General Engineering,General Chemical Engineering,General Chemistry,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3