Affiliation:
1. SÜLEYMAN DEMİREL ÜNİVERSİTESİ
Abstract
Smooth functions are associated with operators on Hilbert spaces of analytic functions through the Berezin transform. The Berezin symbol and the Berezin number of an operator A on the Hilbert functional space H(Ω) over some set Ω with the reproducing kernel are defined, respectively, by
A ̃(μ)=〈A K_μ/K_μ ,K_μ/K_μ 〉,μ∈Ω and ber(A)=sup┬(μ∈Ω)|A ̃(μ)|.
By using this bounded function A ̃, we present some new Berezin number inequalities of Hilbert functional space operators. Some inequalities with respect to Specht's ratio are improved and generalized. Using these modifications, we also establish various new inequalities for the Berezin radius and Berezin norm of operators.
Publisher
El-Cezeri: Journal of Science and Engineering
Subject
General Physics and Astronomy,General Engineering,General Chemical Engineering,General Chemistry,General Computer Science