Identification of focal epileptic regions from electroencephalographic data: Feigenbaum graphs

Author:

Guarneros G.,Pérez C.,Montiel A.,Rojas J. F.ORCID

Abstract

In the study of problems related to epilepsy analyzing electroencephalograms data is of much importance to help, one hand, to its diagnosis, and, another hand in the possibility of diminishing errors in surgery. We do this analysis making the Feigenbaum graphs for real electroencephalographic signals data sets and calculating characteristic networks (graph) quantities, such as average clustering, degree distribution, and average shortest path length. We manage to characterize two different data sets from each other, from data sets corresponding to focal and non-focal neuronal activity both time out of an epileptic seizure. This method enables us to identify sets of data from epileptic focal zones and suggest our approach could be used to aid physicians with diagnosing epilepsy from electroencephalographic data and/or in an exact establishment of the epileptic focal region for surgery.

Publisher

Sociedad Mexicana de Fisica A C

Subject

General Physics and Astronomy,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3