Simulation of the inner electrode geometry effect on the rundown phase characteristics of a coaxial plasma accelerator.

Author:

Gómez Samaniego C.,Nieto Pérez M.,Ramos López G.

Abstract

A 2D computational model, incorporating the Snowplow approximation in the mass balance, is used to simulate the acceleration of an annular current sheath along two coaxial electrodes, with the inner one having either cylindrical or conical shape. The circuit, mass and momentum equations are simultaneously solved in 2D (r, z) considering initial breakdown along the insulator surface, ideal gas mass accretion by the current sheath (snowplow model) and distributed inductance along a coaxial transmission line short-circuited by the current sheath. Plasma density and electron temperature in the current sheath are estimated using standard planar shock theory. Numerical integration of the model’s equations for a given electrode geometry yields the temporal evolution of the current sheath parameters during the axial acceleration phase. In order to see the effect of the inner electrode shape on sheath parameters (i.e. transit time, kinetic energy, total mass, shape, etc.) and/or circuit properties (i.e. circuit inductance, voltage and current evolution, etc.), the portion of the inner electrode beyond the insulator was given a conical shape. By changing the cone slant in a range between ±5°, it was found that the current driven on the plasma sheath varies nonlinearly with the angle. The divergent (positive angle) electrode gives the sheath the highest kinetic energy, being twice the value corresponding to that of the straight inner electrode case, and the transit time is reduced from 1.34 to 1.20 µs. The estimates of plasma density and electron temperature indicate that the achievable ion densities are on the order of 4x1022 m-3, which corresponds to 30 % ionization, and typical temperatures at the end of the rundown phase are on the order of 8 eV. These values are comparable with those measured in experimental devices. The development of this tool will enable us to benchmark its results against an experimental installation currently close to being operational, and a future follow-up paper will be devoted to the comparison between the prediction of the rundown phase behavior and experimental results utilizing conical electrodes.

Publisher

Sociedad Mexicana de Fisica A C

Subject

General Physics and Astronomy,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3