Numerical investigation into the Nd doped YAG rod grooving impact on the sunlight-pumped-laser performance

Author:

SAID MEHELLOU,Hamrouni Noureddine,Ferhat Rehouma

Abstract

This paper presents a numerical analysis of the impact of grooving the Nd doped YAG rod on the sunlight-pumped lasers performance. The study analyzes laser systems that utilize side-exciting and end-side-exciting approaches to activate both grooved and non-grooved Nd doped YAG laser rods. The effects of the rod surface groove on the performance of the sunlight-pumped-lasers are thoroughly examined using ZEMAX© and LASCAD© software. To excite the grooved and non-grooved Nd doped YAG rods alternately, a ring-array sunlight flux concentrator is employed. Moreover, in the side-exciting technique, the head of the laser system contains a rectangular light guide of an extremely transparent glass made from fusing silica and an excitation cavity with a V-shaped configuration, housing the Nd doped YAG rod. This exciting method with a grooved laser rod resulted in a 13.70% increase in laser power and a 28.20% reduction in stress intensity compared to the non-grooved rod. In the end-side-exciting technique, the head of the laser system comprises an aspheric lens made of a fused silica glass and a conical-shaped excitation cavity, accommodating the Nd doped YAG rod. Results indicate that using grooved laser rod in this exciting system did not lead to an amelioration in output laser power. However, this technique enhanced the stress intensity by a reduction of 35.03%.

Publisher

Sociedad Mexicana de Fisica A C

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3