DFT formalism studies on the structural and electronic properties of hexagonal graphene quantum dot with B, N and Si substitutional impurities

Author:

Méndez Martínez K. M.,Nava Maldonado Flavio Manuel

Abstract

The study of carbon-based nanostructured materials is a highly active research field, that has made significant progress in the study of twodimensional materials and nanotechnology. The interest in these materials is mainly attributed to the fascinating properties they exhibit, as seen in the case of graphene as a 2D material, as well as emergence on numerous novel 2D materials and their heterostructures. Additionally, there is important interest in systems such as 2D quantum dots. Therefore, this work focuses on the systematic study of graphene quantum dots of various sizes, all within the framework of first-principles density functional theory. We started with the simplest graphene quantum dot (GQD) structure, benzene (C6H6), which consist of six carbon atoms passivated with hydrogen atoms. We then increased its size by adding more aromatic rings, resulting in the following GQD configurations: C24H12, C54H18, C96H24, C150H30 and C216H36. We report the density of states (DOS) and the imaginary part of the dielectric function (ε2) for the system, analyzing both the pristine configuration and the effect of both single and double (boron, nitrogen and silicon, denoted as Sa). The double substitutional atom study was done considering random, ortho-, meta-, and para-director positions just for the C94H24Sa2 GQD. In general, we can conclude that as the GQD increases in size, the HOMO-LUMO energy decreases. Furthermore, it is observed that boron and nitrogen exhibit their expected n-, and p-type doping characteristics, but this differs between single and double Sa substitutions. Additionally, the imaginary part of the dielectric function is highly sensitive to the positions of single and double substitutional atoms, as well as the polarization of incident light. Therefore, we suggest that these differences can be used to clearly determinate the type of substitutional atoms and their positions from optical measurements.

Publisher

Sociedad Mexicana de Fisica A C

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3