A comparative study between the addition of nano and micro-particles of Co3O4 on the electrical and microstructural properties of a ceramic system based on SnO2

Author:

Miranda López M. I,Hernández Hernández M. B.,Vera Barrios B. S.,Toxqui Teran A.,Aguilar Martinez J. A.ORCID

Abstract

A comparative study between the addition of Co3O4 micro-particles and nano-particles as densifying dopant of a SnO2 based varistor system was conducted. The ceramic composition was (99.9-X) %SnO2–X %Co3O4–0.05 %Cr2O3–0.05 %Nb2O5 where X = 0, 0.5, 1.0, 2.0 and 4.0 mol%. Two particle sizes of Co3O4 were used (~5 µm and ~50 nm). The addition of 0.5 mol% of Co3O4 nano-particles promoted an increase of grain size of sintered samples up to 7.9 µm, that is, the maximum value among all variations.  Characterization techniques such as TGA, DTA, XRD, and Rietveld analysis revealed a decrease of 16 ºC in the formation temperature of Co2SnO4 as well as an increase of 2.6 wt% in the amount of said phase with the use of 4.0 mol% of Co3O4 nano-particles in comparison with micro-particles. Statistical analysis indicated that the addition of nano-particles of Co3O4 yield better repeatability on densification of ceramic samples. Residual porosity also was decreased. Electrical breakdown and non-linear coefficient values correspond to a non-ohmic behavior with potential application on manufacture of high voltage varistors. The findings of this work can be used as a reference for conducting a later study to improve the electrical properties or even to lower the sintering temperature.

Publisher

Sociedad Mexicana de Fisica A C

Subject

General Physics and Astronomy,Education

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3