Flat bands, quantum Hall effect and superconductivity in twisted bilayer graphene at magic angles

Author:

Navarro Labastida Leonardo Antonio,G. Naumis G.

Abstract

Flat band electronic modes are responsible for superconductivity in twisted bilayer graphene (TBG) rotated at magic angles. From there other magic angles can be found for any multilayered twisted graphene systems. Eventually, this lead to the discovery of the highest ever known electron-electron correlated material. Moreover, the quantum phase diagram of TBG is akin to those observed among high-Tc superconductors and thus there is a huge research effort to understand TBG in the hope of clarifying the physics behind such strong correlations. A particularity of the TBG is the coexistence of superconductivity and the fractional Quantum Hall effect, yet this relationship is not understood. In this work, a simple 2 × 2 matrix model for TBG is introduced. It contains the magic angles and due to the intrinsic chiral symmetry in TBG, a lowest energy level related to the quantum Hall effect. The non-Abelian properties of this Hamiltonian play a central role in the electronic localization to produce the flat bands and here it is proved that the squared Hamiltonian of the chiral TBG model is equivalent to a single electron Hamiltonian inside of a non-Abelian pseudo-magnetic field produced by electrons in other layers. Therefore, the basic and fundamental elements in the physics of magic angles are determined. In particular, a study is made on these fundamental energy contributions at the Γ-point due to its relation to the recurrence of magic angles and its relationship with the Quantum Hall effect.

Publisher

Sociedad Mexicana de Fisica A C

Subject

General Physics and Astronomy,Education

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3