Estimating the dose differences nearby the metal implant by means of artificial contouring errors via Monaco and Geant4

Author:

Bakıcıerler Aybars Gizem,Şişman G.,Akgüngör K.

Abstract

Metal artifacts cause errors in the exact delineation of implants and dose changes in radiotherapy. In this study, the dose distribution differences in the region of interest (ROI) were calculated by deliberately making contouring errors from the real size of model implants by using both Monaco treatment planning system (TPS) and Geant4 toolkit. In Sec. 2, the computed tomography images were acquired by placing known uniform cylindrical geometry titanium (Ti6Al4V) and cobalt (CoCrMo) alloys into water phantoms separately. The metal alloys were artificially contoured as 2 mm contracted and expanded from their real dimensions in Monaco TPS. The plans were generated with 6 MV photon beams for contouring of three different sizes, real, contracted and expanded, for each metal alloy. In addition, all configurations were simulated in Geant4 by using the photon energy spectrum data of the Elekta Synergy linear accelerator. Then, the 3D dose data obtained from ROIs near the implant in Monaco TPS and Geant4 were analyzed with in-house programs. In Sec. 3, the depth dose values of Geant4 were compatible with TPS calculations and ion chamber measurements. When the alloys were contoured to real dimensions, it was observed that the local isodose values have changed up to 15% in ROI. The mean dose values were found to be higher in contracted and lower in expanded contours. It was observed that ±2 mm error in contouring the implants changed the mean dose up to ±8%. In Sec. 4, this study emphasized that a few millimeters of error in contouring different implant materials can have a significant effect on dose distribution in a region close to the implant.

Publisher

Sociedad Mexicana de Fisica A C

Subject

General Physics and Astronomy,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3