Vortex magnetic induction: Mathematical, geometric and experimental characterization.

Author:

Ramírez Galindo Ángel David,Pérez Olivas Huetzin,Basurto Islas Gustavo,Hernandez Rayas Angelica,González López Fernando,Córdova Fraga Teodoro

Abstract

Some current energy transfer modules and magnetic stimulation systems with vortex fields are mostly composed of a Rodin coil. It has been hypothesized that the most significant changes in the biological system stimulated with vortex magnetic fields are related to the type of field lines and its magnetic field gradient. Therefore, characterizing the vortex magnetic field produced inside this coil and defining the behavior of the field gradient is necessary to take full advantage of its efficiency. The theoretical Biot-Savart law for this coil geometry is discussed in this work, and the magnetic induction lines are characterized. Magnetic field modeling is done with the finite element method; the above processes are correlated with the register of the magnetic field of the Rodin performed with a three-dimensional magnetometer. Furthermore, the results obtained with Rodin coil stimulation are compared with those obtained with Helmholtz coil stimulation of a similar biological system. The effect is widely evident in the first case.

Publisher

Sociedad Mexicana de Fisica A C

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Devices, Facilities, and Shielding for Biological Experiments With Static and Extremely Low Frequency Magnetic Fields;IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3