Water effect in the synthesis of nanostructured thin films of HfO2 deposited by the ultrasonic spray pyrolysis technique

Author:

Vazquez-Arreguin Roberto,Cisneros Alejandro Gonzalez,Juárez-Gracia Antonio Gustavo,Mariscal-Becerra Luis,García-Rocha Miguel,Duran-Ledezma Angel Adalberto

Abstract

HfO2 thin films are proposed as high-k gate dielectric, especially for the fabrication of ultra-large-scale integration systems. The effect of adding deionized water during the synthesis of HfO2 thin films on its structural and dielectric properties is reported. The study of nanostructured HfO2 thin films deposited on crystalline silicon wafers is made by applying the ultrasonic spray pyrolysis (USP) technique. For the synthesis of hafnium oxide thin films, hafnium acetylacetonate was dissolved in dimethylformamide as a hafnium source material. Varying the substrate temperature from 400 and up to 550 °C in increments of 50 °C and adding deionized water during the process, favoring films with well-defined monoclinic well as polycrystalline structures. The thin films presented a nanostructured morphology and a rugosity with a minimum value of 0.45 nm. Refractive index values between 1.87 and 2.02 have been obtained with an average thickness of ~ 21 nm. The carbon and O-H binds decrease considerably, adding deionized water to the deposit. The electrical characterization revealed that the films deposited with deionized water have a high dielectric constant with a maximum value of 14.4, demonstrating that this addition during deposition allows thinner films with good dielectric properties.

Publisher

Sociedad Mexicana de Fisica A C

Subject

General Physics and Astronomy,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3