Solution of the fractional diffusion equation by using Caputo-Fabrizio derivative: application to intrinsic arsenic diffusion in germanium
-
Published:2024-01-03
Issue:1 Jan-Feb
Volume:70
Page:
-
ISSN:2683-2224
-
Container-title:Revista Mexicana de Física
-
language:
-
Short-container-title:Rev. Mex. Fís.
Author:
Meftah Mohammed Tayeb,A. Souigat A.,Korichi Z.
Abstract
In this work, we focused on solving the space-time fractional diffusion equation with an application on the intrinsic arsenic diffusion in germanium. At first we have treated the differential equation in a semi-infinite medium by using Caputo-Fabrizio fractional derivative. We have introduced the Laplace transform to solve this type of equations. Secondly, Based on the obtained solution, we have simulated an profile of arsenic diffusion in germanium under intrinsic conditions. Accurate simulations have been achieved showing that the fractional derivative orders affect on the estimation of the diffusion coefficient, where increasing the time fractional derivative order α reduces the value of the diffusion coefficient, while increasing the space fractional derivative order β increases the value of the diffusion coefficient.
Publisher
Sociedad Mexicana de Fisica A C