Abstract
We explicitly show that the groups of $2 \times 2$ unitary matrices with determinant equal to 1 whose entries are double or dual numbers are homomorphic to ${\rm SO}(2,1)$ or to the group of rigid motions of the Euclidean plane, respectively, and we introduce the corresponding two-component spinors. We show that with the aid of the double numbers we can find generating functions for separable solutions of the Laplace equation in the $(2 + 1)$ Minkowski space, which contain special functions that also appear in the solution of the Laplace equation in the three-dimensional Euclidean space, in spheroidal and toroidal coordinates.
Publisher
Sociedad Mexicana de Fisica A C
Subject
General Physics and Astronomy,Education
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献