Thermodynamics of viscous dark energy for the late future time universe

Author:

Tamayo Ramírez David Alejandro

Abstract

In this work we explore the thermodynamic aspects of dark energy for late future time universe in two different scenarios: as a perfect fluid with constant and variable equation of state parameter; and as dissipative fluid described by a barotropic equation of state with bulk viscosity in the framework of the Eckart theory and the full Israel-Stewart theory.We explore cosmological solutions for a flat, homogeneous and isotropic universe; and we assume the late future time behavior when the dark energy dominates the cosmic evolution.When modeled as a perfect fluid with a dynamical equation of state, $p=w(a)\rho$, the dark energy has an energy density, temperature and entropy well defined and an interesting result is that there is no entropy production even though been dynamical. For dissipative dark energy, in the Eckart theory two cases are studied: $\xi=const.$ and $\xi =(\beta/\sqrt{3}) \rho^{1/2}$; it is found that the entropy grows exponentially for the first case and as a power-law for the second.In the Israel-Stewart theory we consider a $\xi =\xi_0 \rho^{1/2}$ and a relaxation time $\tau = \xi/\rho$; an analytical Big Rip solution is obtained with a power-law entropy.In all cases is obtained a power-law relation between temperature and energy density.In order to maintain the second law of thermodynamics theoretical constraints for the equation of state are found in the different dark energy models studied.A barotropic dark fluid with $w<-1$ is thermodynamically difficult to support, but the overall effect of bulk viscosity in certain cases allows a phantom regime without thermodynamic anomalies.

Publisher

Sociedad Mexicana de Fisica A C

Subject

General Physics and Astronomy,Education

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3