Sensing system with an artificial neural network based on floating-gate metal oxide semiconductor transistors

Author:

González-Vidal J. L.,Reyes-Barranca M. A.,Vázquez-Acosta E. N.,Raygoza-Panduro J. J.

Abstract

This paper shows a novel design of a gas sensor system based on artificial neural networks and Floating-gate MOS Transistors (FGMOS). Two types of circuits with FGMOS transistors of minimum dimensions were designed and simulated by Simulink of Matlab; simulations and experimental measurements results were compared obtaining good expectations. The reason of using FGMOS is that ANN can also be implemented with these kinds of devices, since ANN’s based on FGMOS are able to produce pseudo Gaussian-functions. These functions give a reliable option to determine the gas concentration. A sensitive thin film can be deposited on the FGMOS’s floating gate, which produces a charge variation due to the chemical reaction between the sensitive layer and the gas species, modifying the threshold voltage thereby a correlation of drain current of the FGMOS with gas concentration can be obtained. Therefore, a generator circuit was implemented for the pseudo Gaussian signal with FGMOS. This system can be applied in environments with dangerous species such as CO2, CO, methane, propane, among others. Simulations demonstrated that the implemented proposal has a good performance as an alternative method for sensing gas concentrations, compared with conventional sensors.

Publisher

Sociedad Mexicana de Fisica A C

Subject

General Physics and Astronomy,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3