Green chemistry synthesis and structural and optical study of Dy2(CO3)3→ Dy2O3 transition

Author:

Portillo Oscar,Chavez Portillo M.ORCID,Juarez Santiesteban H.,Serrano de La Rosa L.ORCID,Alvarado Pulido J.ORCID,Ramos Reynoso Y.

Abstract

This paper presents preliminary results of Dy2(CO3)3→Dy2O3 transition have been successfully obtained by Chemical Bath Deposition technical and subsequent thermal annealing temperature at ~600 °C. Two different temperatures of ~20°C and ~90 °C ± 2 °C are chosen to carry out the nanocrystalline growth. The crystalline phase is investigated by applying X-Ray Diffraction (XRD) and some optical properties; Transmittance, Reflectivity, Normalized Absorbance, real (n) and imaginary (k) parts refractive index. The crystalline phase of these inorganic nanomaterials for Dy2(CO3)3 is orthorhombic phase, while for Dy2O3 it is cubic. Grain size average values located at ranged ~2.8-3.4 nm for Dy2(CO3)3 and ~6.5-9.6 nm for Dy2O3. Vibrational modes are identified by Raman spectroscopy, modes at ~150-1800 cm-1 frequency range assigned to internal vibrations of  ion: v1-symmetric stretching (~1098 cm-1) v3-asymmetric -C-O stretching situated at ∼1063 cm-1, were observed corresponding to orthorhombic crystalline phase. The Fg+ Ag and A1g modes, corresponding to cubic phase Dy2O3. Multiple absorption bands with different relative intensities are observed at UV-Vis-NIR region, assigned to 4fs→4fs intra-electronic transitions and band gap energy. Absorption measurement were assigned to the transitions from ground state (6H15/2) to different excited states such as 4I13/2→4F7/2, 4I15/2, 6F3/2, 6F5/2, 6F7/2→6H5/2, 6F9/2→6H7/2, 6F11/2→6H9/2 and 6H11/2 of Dy3+ cation. Tauc’s plot reveals band gap situated at range ~4.66-5.17 eV for Dy2(CO3)3 and ~4.26-4.80 eV for Dy2O3 respectively.

Publisher

Sociedad Mexicana de Fisica A C

Subject

General Physics and Astronomy,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3