Phase stability, mechanical, electronic, magnetic and thermodynamic properties of the Pd2PrX(X=Cl, F) compounds: An Ab-initio study

Author:

Benatmane Saadiya,Affane M.,Bouali Y.,Bouadjemi B.,Cherid S.,Benstaali W.

Abstract

Many of the known examples of half-metallic ferromagnets HMF are oxides, sulfides, or Heusler alloys have attracted some interest for their potential use in spintronics. In order to achieve such understanding we have performed an ab-initio calculations with spin polarization using plane-wave pseudo potential technique based on the density-functional theory (DFT), the exchange-correlation potential was treated with the generalized gradient approximation (PBE-GGA), whereas for the treatment of on-site electron-electron correlations the PBE-GGA+U approximation (where U is the Hubbard Coulomb energy term) are applied for the calculation of the structural, electronic, elastic and magnetic properties of Pd2PrX (X=Cl, F). The results showed that for Pd2PrCl and Pd2PrF, Hg2CuTi-type structure is energetically more stable than Cu2MnAl-type structure at the equilibrium volume. Electronically, Pd2PrCl and Pd2PrF exhibit half-metallicity with small band gaps of 0.06 and 0.25eV respectively with GGA-PBE+U in the spin-down channels whereas spin-up channels are conducting. The calculated total magnetic moment of 2.00 μB per formula unit is very close to integer value and agree well with the Slater-Pauling rules ( Mtot=34-Ztot), where the magnetic moment is basically carried by Pr atoms. However, the elastic properties show that Pd2PrX (X=Cl, F) compounds are ductile and anisotropic according to the analysis of B/G and Cauchy’s pressure. The Thermodynamic properties were also analyzed using the quasi-harmonic Debye model. Both the compounds are found structurally stable.

Publisher

Sociedad Mexicana de Fisica A C

Subject

General Physics and Astronomy,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3