Low impact sampling of speleothems – reconciling scientific study with cave conservation

Author:

MacGregor Claire L.V.1,Hellstrom John1,Woodhead Jon1,Drysdale Russell1,Eberhard Rolan2

Affiliation:

1. School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Australia

2. Natural and Cultural Heritage Division, Department of Primary Industries, Parks, Water & Environment, Tasmania, Australia

Abstract

Speleothems are increasingly valued as important paleoclimate archives and yet the removal of samples from caves can come at a cost to natural heritage, impacting delicate environments with limited mechanisms for repair. Conservation of cave environments is a key responsibility for scientists and, with this in mind, we are working to develop and implement techniques that allow us to extract valuable scientific data, with minimal impact. In this study, we demonstrate the utility of low-impact reconnaissance dating surveys on caves in southern Tasmania and southwest Western Australia as a precursor to the removal of stalagmites for paleoclimate reconstruction. Small flakes of calcite were discretely extracted from the base and tip of fallen stalagmites and dated using U-Th techniques. We specifically targeted stalagmites that have naturally fallen or been previously broken by human interference, to further reduce our impact on the caves. This approach provides maximum and minimum age constraints for each stalagmite and valuable information of growth frequencies without the need to remove whole samples from the cave. Selecting the most appropriate samples to analyze based on reconnaissance ages greatly reduces the quantity of speleothem material to be removed from a cave to locate a desired interval of past time, mitigating the impacts of the research. Moreover, the reconnaissance age data enable us to build an archive of speleothem ages from the cave for future scientific research and to provide information on the age and nature of cave development, useful for cave management purposes and other studies. To assess the accuracy of this method we compared the reconnaissance age with the results of a detailed age evaluation on a small number of stalagmites removed from the caves. We have found this method to be effective and has allowed us to successfully identify several stalagmites suitable for our scientific objectives.

Publisher

University of South Florida Libraries

Subject

Earth-Surface Processes,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3