Monitoring photosynthetic activity using in vivo chlorophyll a fluorescence in microalgae and cyanobacteria biofilms in the Nerja Cave (Malaga, Spain)

Author:

Del Rosal Yolanda1,Muñoz-Fernández Juan2,Celis-Plá Paula3,Hernández-Mariné Mariona4,Álvarez-Gómez Félix2,Merino Salvador2,Figueroa Félix2

Affiliation:

1. Nerja Cave Research Institute, Spain

2. University of Malaga, Spain

3. University of Playa Ancha, Chile

4. Universitat de Barcelona, Spain

Abstract

The characterization of the most common photosynthetic biofilms in the Nerja Cave by the continuous monitoring of the in vivo chlorophyll a (Chl a) fluorescence and the incorporation of the irradiance as a new environmental variable related to previous studies in the cave, have allowed us to improve our knowledge about the photosynthetic pattern of the biofilms of the cave. Effective quantum yield (ΔF/Fm) and relative electron transport rate (rETR) were determined during periods of the light, whereas the maximal quantum yield (Fv /Fm) was determined during dark periods. Increases in the photosynthetic yields and productivity in summer period were found related to the highest values of the environmental variables, such as relative humidity, air carbon dioxide concentration and air temperature. According to the irradiance, the studied biofilms had an optimal growth with cave lighting, considered low in comparison with similar studies, perhaps because they can grow mixotrophically too. Moreover, when the irradiance increased, both the ΔF/Fm′ and the rETR decreased in springtime, suggesting photoinhibition of the photosynthetic yield in the biofilms within the cave, whereas in the summertime, the photosynthetic yield had a positive correlation with the irradiance, suggesting a decreased of the photoinhibition, possibly due to the increase of the environmental variables values which provokes an alleviate on the extent of photoinhibition.

Publisher

University of South Florida Libraries

Subject

Earth-Surface Processes,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3