Preliminary data of potentially hazardous radon concentrations in Modrič Cave (Croatia)

Author:

Lončarić Robert1,Radolić Vanja2,Surić Maša1,Miklavčić Igor2,Šatalić Matea3,Paar Dalibor4,Obšivač Lukrecija3

Affiliation:

1. Department of Geography, University of Zadar, Croatia

2. Department of Physics, J. J. Strossmayer University of Osijek, Croatia

3. Speleological section Liburnija, Mountaineering Association Paklenica, Zadar, Croatia

4. Department of Physics, University of Zagreb, Croatia

Abstract

Instigated by relatively high cave-air CO2 concentrations in Modrič Cave (Croatia) recorded for the purpose of speleothem-based paleoclimate research, we established preliminary monitoring of radon (222Rn) concentrations within the cave for a 4.5-year period (2018–2022). As radioactive geogenic gas, radon, which often correlates with cave-air CO2 concentrations, presents a potential health hazard in cases of longer exposure time in high concentration conditions. Since the Modrič Cave is open to tourists and long-term scientific research has been performed within, a safety assessment for radon concentrations was essential. The integrated measurements of radon concentrations were performed by passive LR115 detectors that were exposed from three to six months at eight sites within the cave. Preliminary results showed seasonal variations of radon concentrations (0.08–13.6 kBq/m3) governed by the cave ventilation patterns, but superimposed on this, cave morphology and bedrock architecture control the radon variations on finer spatial scale. The 3-months average 222Rn concentration of up to 13.6 kBq/m3 during summer in one of the cave passages is among the highest measured seasonal averaged radon concentrations in Croatian caves, but maximum concentrations were even higher. Based on obtained results and calculations, potential negative health effects of radon exposure for cave visitors, guides and scientists were assessed and the results showed values of exposure to be below recommended levels. Calculated worst-case scenario for cave guides (most affected by radon and its progeny) revealed that they would receive dose slightly below the occupational dose limit of 20 mSv/y (19.0 ± 5.2 mSv/y) in the touristic part of the cave and significantly higher doses (34.1 ± 9.2 mSv/y) in the non-touristic part of the cave. To detect precise spatio-temporal radon concentration variations (up to diurnal scale) we recently established continuous radon measurements. This will enable detection of possibly health threatening short-term peaks in radon concentration and consequently further improve cave management.

Publisher

University of South Florida Libraries

Subject

Earth-Surface Processes,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3