Predictive modeling of cave entrance locations: relationships between surface and subsurface morphology

Author:

Blitch William1,Sovie Adia2,Tobin Benjamin1

Affiliation:

1. University of Kentucky, Lexington, USA

2. Michigan State University, USA

Abstract

Cave entrances directly connect the surface and subsurface geomorphology in karst landscapes. Understanding the spatial distribution of these features can help identify areas on the landscape that are critical to flow in the karst groundwater system. Sinkholes and springs are major locations of inflow and outflow from the groundwater system, respectively, however not all sinkholes and springs are equally connected to the main conduit system. Predicting where on the landscape zones of high connectivity exist is a challenge because cave entrances are difficult to detect and imperfectly documented. Wildlife research has a similar issue of understanding the complexities of where a given species is likely to exist on a landscape given incomplete information and presence-only data. Species distribution models can address some of these issues to create accurate predictions of species or event occurrence across the landscape. Here we apply a species distribution model, MaxEnt, to predict cave entrance locations in three geomorphic regions of Kentucky. We built the models with cave locations from the Kentucky Speleological Survey database and landscape predictor variables, including distance from sinkholes, distance from springs, distance from faults, elevation, lithology, slope, and aspect. All three regional models predict cave locations well with the most important variables for predicting cave entrance locations consistent between models. Throughout all three models, sinkholes and springs had the largest influence on the likelihood of cave entrance presence. This unique use of species distribution modeling techniques shows that they are potentially valuable tools to understand spatial patterns of other landscape features that are either ephemeral or difficult to identify using standard techniques.

Publisher

University of South Florida Libraries

Subject

Earth-Surface Processes,Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3