MinDet1: A deep learning-enabled approach for plagioclase textural studies

Author:

Toth NorbertORCID,Maclennan JohnORCID

Abstract

Quantitative textural attributes, such as crystal size distributions or aspect ratios, provide important constraints on the thermal history of rocks. They facilitate the investigation of crystal nucleation, growth, and mixing as well as cooling rate. However, they require large volumes of crystal segmentations and measurements often obtained with manual methods. Here, a deep learning-based technique—instance segmentation—is proposed to automate the pixel-by-pixel detection of plagioclase crystals in thin-section images. Using predictions from a re-trained model, the physical properties of the detected crystals (size and aspect ratio) are rapidly generated to provide textural insights. These are validated against published results from manual approaches to demonstrate the accuracy of the method. The power and efficiency of this approach is showcased by analysing an entire sample suite, segmenting over 48,000 crystals in a matter of days. The approach is available as MinDet1 software for users with moderate expertise in Python. Widespread use of MinDet may facilitate significant developments in igneous petrography and related fields.

Publisher

Volcanica

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3