Abstract
Background-Shortages of personal protective equipment (PPE) including N95 filtering facepiece respirators is an urgent concern in the setting of the global COVID-19 pandemic. Decontamination of PPE could be useful to maintain adequate supplies, but there is uncertainty regarding the efficacy of decontamination technologies.Methods-A modification of the American Society for Testing and Materials standard quantitative carrier disk test method (ASTM E-2197-11) was used to examine the effectiveness of ultraviolet-C (UV-C) light, a high-level disinfection cabinet that generates aerosolized peracetic acid and hydrogen peroxide, and dry heat at 70°C for 30 minutes for decontamination of bacteriophages Phi6 and MS2 and methicillin-resistant Staphylococcus aureus (MRSA) inoculated onto 3 commercial N95 respirators. Three and 6 log10 reductions on N95 respirators were considered effective for decontamination and disinfection, respectively. Results-UV-C administered as a 1-minute cycle in a UV-C box or a 30-minute cycle by a room decontamination device reduced contamination but did not meet criteria for decontamination of the viruses from all sites for any of the N95s. The high-level disinfection cabinet was effective for decontamination of all the organisms from the N95s and achieved disinfection with 3 disinfection cycles over ~60 minutes. Dry heat at 70°C for 30 minutes was not effective for decontamination of the bacteriophages. Conclusions-UV-C could be useful to reduce contamination on N95 respirators. However, the UV-C technologies studied did not meet our criteria for decontamination under the test conditions used. The high-level disinfection cabinet was effective for decontamination of N95s and met criteria for disinfection with multiple cycles.
Publisher
Case Western Reserve University
Subject
Infectious Diseases,Microbiology (medical),Molecular Biology,Immunology,Immunology and Allergy
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献