Real-World Evidence on the Effectiveness of Plexiglass Barriers in Reducing Aerosol Exposure

Author:

Cadnum Jennifer,Jencson Annette,Memic Samir,Osborne Andrew,Torres-Teran Maria,Wilson Brigid,Deshpande Abhishek,Donskey CurtisORCID

Abstract

 Reprinted with permission, Cleveland Clinic Foundation ©2022. All Rights Reserved Background: Barriers are commonly installed in workplace situations where physical distancing cannot be maintained to reduce the risk for transmission of respiratory viruses. Although some types of barriers have been shown to reduce exposure to aerosols in laboratory-based testing, limited information is available on the efficacy of barriers in real-world settings.  Methods: In an acute care hospital, we tested the effectiveness of in-use plexiglass barriers in reducing exposure of staff to aerosolized particles. A nebulizer was used to release 5% NaCl aerosol 1 meter from staff members with and without the barrier positioned between the point of aerosol release and the hospital staff. Particle counts on the staff side of the barrier were measured using a 6-channel particle counter. A condensed moisture (fog) generating device was used to visualize the airflow patterns.  Results: Of 13 in-use barriers tested, 6 (46%) significantly reduced aerosol particle counts detected behind the barrier, 6 (46%) reduced particle counts to a modest, non-significant degree, and 1 (8%) significantly increased particle counts behind the barrier. Condensed moisture fog accumulated in the area where staff were seated behind the barrier that increased particle exposure, but not behind the other barriers. After repositioning the ineffective barrier, the condensed moisture fog no longer accumulated behind the barrier and aerosol exposure was reduced.  Conclusion: In real-world settings, plexiglass barriers vary widely in effectiveness in reducing staff exposure to aerosols, and some barriers may increase risk for exposure if not positioned correctly. Devices that visualize airflow patterns may be useful as simple tools to assess barriers. 

Publisher

Case Western Reserve University

Subject

Infectious Diseases,Microbiology (medical),Molecular Biology,Immunology,Immunology and Allergy

Reference19 articles.

1.

1. Centers for Disease Control and Prevention. Ventilation in Buildings. Accessed July 2, 2022. Available from: https://www.cdc.gov/coronavirus/2019-ncov/community/ventilation.html.

2.

2. Zabarsky TF, Bhullar D, Silva SY, Mana TSC, Ertle MT, Navas ME, Donskey CJ. What are the sources of exposure in healthcare personnel with coronavirus disease 2019 infection? Am J Infect Control. 2021;49(3):392-5. doi: 10.1016/j.ajic.2020.08.004. PubMed PMID: 32795495; PMCID: PMC7419261.

3.

3. Jinadatha C, Jones LD, Choi H, Chatterjee P, Hwang M, Redmond SN, Navas ME, Zabarsky TF, Bhullar D, Cadnum JL, Donskey CJ. Transmission of SARS-CoV-2 in Inpatient and Outpatient Settings in a Veterans Affairs Health Care System. Open Forum Infect Dis. 2021;8(8):ofab328. doi: 10.1093/ofid/ofab328. PubMed PMID: 34426792; PMCID: PMC8344547.

4.

4. Jones LD, Chan ER, Cadnum JL, Redmond SN, Navas ME, Zabarsky TF, Eckstein EC, Kovach JD, Linger M, Zimmerman PA, Donskey CJ. Investigation of a cluster of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in a hospital administration building. Infect Control Hosp Epidemiol. 2022:1-7. doi: 10.1017/ice.2022.45. PubMed PMID: 35189996.

5.

5. Chan ER, Jones LD, Redmond SN, Navas ME, Kachaluba NM, Zabarsky TF, Bhullar D, Cadnum JL, Zimmerman PA, Donskey CJ. Use of whole-genome sequencing to investigate a cluster of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in emergency department personnel. Infect Control Hosp Epidemiol. 2022;43(10):1485-7. doi: 10.1017/ice.2021.208. PubMed PMID: 33941299; PMCID: PMC8144813.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3