Wastewater and Mixed Microbial Consortia: a metastudy analysis of Optimal Microbial Fuel Cell configuration

Author:

Ryan JonathonORCID,Ferral-Smith HaydenORCID,Wilson Joshua

Abstract

Microbial Fuel Cells (MFCs) are an area of increasing research for use as an alternative energy source, due to their ability to produce electricity while simultaneously treating organic waste. This meta-study determines the optimal MFC configuration for electricity production, through consideration of the biocatalyst and substrate used. This study focuses primarily on comparing the use of mixed microbial consortia to pure strains of biocatalyst, and the use of waste water in contrast to simple substrates such as; acetate, glucose, and lactate. The use of algae as a substrate, and as a biocatalyst, is also investigated. In this study, only single and dual chamber MFCs are compared, and power density standardised to anode surface area (mW/m2) is used as a metric to facilitate the comparison of different experimental setups. This meta-study shows that dual chamber MFCs, using simple substrates, when catalysed by mixed culture biocatalysts, produce greater power densities, than algae, and complex substrates, with average power densities of 280, 70 and 30 (mW/m2) observed respectively. In single chamber MFC configurations, mixed culture biocatalysts have been observed to yield approximately double the power output of pure culture biocatalysts.

Publisher

University of Technology, Sydney (UTS)

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Current Status on Microbial Fuel Cell (MFC) Technology;Renewable Energy from Bio-resources in Malaysia;2022

2. Application of OPEFB Fibre Based Electrode in Microbial Fuel Cell System for Electricity Generation and Chlorophenol Degradation;IOP Conference Series: Earth and Environmental Science;2021-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3