Abstract
Sosyal medyanın gelişmesi, insanların ürünler ve bunları sağlayan işletmeler hakkında başkalarıyla iletişim kurmasını kolaylaştırmıştır. Bu gelişme, tüketicilerin restoranlar hakkında yorum yapmasına olanak tanırken işletmeler açısından da performans üzerinde oldukça etkili hale gelmiştir. Tüketicilerin çevrimiçi yapmış oldukları bu değerlendirmeler restoran tercihinde karar verme sürecini etkilerken aynı zamanda restoran performansını da önemli ölçüde etkilediği ifade edilmiştir. Dolayısıyla restoranları değerlendiren uygulamalar dikkat çekmeye başlamıştır. Bu uygulamalarla beraber tüketiciler aldığı hizmeti puanlama, değerlendirme ve yorumlama fırsatı bulmaktadır. İşletmeler ise bu tür uygulamaları ciddi bir rekabet aracı olarak görmekte ve takip etmektedir. Restoranları değerlendiren uygulamalardan biri olan Yelp, San Francisco-Kaliforniya merkezli olup 2004 yılında kurulmuştur. Halka açık bir Amerikan şirketidir. Bu şirket, işletmeler yani restoranlar hakkında incelemeler yayınlayan Yelp.com web sitesini ve aynı zamanda Yelp mobil uygulamasını geliştirmiştir. Bu uygulamada kullanıcılar işletmeyle ilgili bir ile 5 yıldız derecelendirme sistemi kullanarak aldığı hizmetin değerlendirmesini yapabilmektedir. Yelp 2021 yılında, çeşitli data setlerinin yayınlandığı “www.kaggle.com” (veri bilimciler ve makine öğrenimi uygulayıcılarından oluşan çevrimiçi topluluk) üzerinden veri paylaşımında bulunmuştur. Bu noktadan hareketle araştırmanın amacı, Yelp uygulamasındaki restoranların Keşifsel Veri Analizi kullanılarak incelenmesidir. Keşifsel Veri Analizi ise, genellikle istatistiksel grafikler ve diğer veri görselleştirme yöntemlerini kullanarak temel özelliklerini özetlemek için veri kümelerini analiz etme yaklaşımıdır. Araştırmanın veri setini ise kaggle’da yer alan data seti oluşturmaktadır. Sonuçlara bakıldığında, kullanıcıların yıllar üzerindeki yorum artış miktarı analiz edilerek pandemi etkisi fark edilmiştir. Restoran incelemesinde “great, love, amazing, awesome ve bad” yorumlarda kullanılan en sık kelimeler olarak görülmektedir.
Publisher
International Journal of Contemporary Tourism Research
Reference28 articles.
1. AAA Diamonds (2022). Erişim Linki: https://www.aaa.com/diamonds/$ , Erişim Tarihi: 19.09.2022.
2. Anderson, M., & Magruder, J. (2012). Learning from the crowd: Regression discontinuity estimates of the effects of an online review database. The Economic Journal, 122(563), 957-989.
3. Antonio, N., de Almeida, A. M., Nunes, L., Batista, F., & Ribeiro, R. (2018). Hotel online reviews: creating a multi-source aggregated index. International Journal of Contemporary Hospitality Management.
4. Asani, E., Vahdat-Nejad, H., & Sadri, J. (2021). Restaurant recommender system based on sentiment analysis. Machine Learning with Applications, 6, 100114.
5. Asghar, N. (2016). Yelp dataset challenge: Review rating prediction. arXiv preprint arXiv:1605.05362.