New Approach to SCADA System Screen Configuration Based on the Model of Oil and Gas Pipeline Network
-
Published:2024-03-19
Issue:
Volume:11
Page:
-
ISSN:2032-944X
-
Container-title:EAI Endorsed Transactions on Energy Web
-
language:
-
Short-container-title:EAI Endorsed Trans Energy Web
Author:
Huang He,Li Yafeng,Ma Liang,Mao Bingqiang,Zhang Lin,Yang Jingli,Wang Haishan,Sun Yanguo,Zhao Xiaochuan,Lv Muhao
Abstract
INTRODUCTION: With the continuous progress of science and technology, the monitoring and control of oil and gas pipeline networks have become more and more critical; SCADA systems, as a kind of technology widely used in industrial control, play a key role. The screen configuration of the SCADA system is the core part of its user interface, which is directly related to the operator's mastery of the status of the pipeline network. In order to improve the monitoring efficiency and reduce the operation risk, this study is devoted to exploring a new method of SCADA system screen configuration based on the oil and gas pipeline network model.PURPOSE: The purpose of this study is to develop an innovative SCADA system screen configuration method to present the operating status of the oil and gas pipeline network more intuitively and efficiently. The design based on the pipeline network model aims to enhance the operators' understanding of essential information, such as pipeline network topology, fluid flow, etc., so as to make monitoring and control more intelligent.METHODS: The study adopts a new method of SCADA system screen configuration based on the oil and gas pipeline network model. First, the topology, sensor data, and control nodes of the oil and gas pipeline network are comprehensively modelled. Then, through the design principle of human-computer interaction, the modelling results are integrated into the screen configuration of the SCADA system to realize the intuitive presentation of information. At the same time, advanced visualization technology is introduced so that the operators can understand the real-time changes in the pipe network status more clearly.RESULTS: After experimental verification, the new method shows significant advantages in oil and gas pipeline network monitoring. The operators can recognize the abnormalities of the pipeline network more quickly and accurately through the SCADA system screen configuration, which improves the efficiency of troubleshooting and treatment. The visualized interface design makes the operation more intuitive and reduces the possibility of operating errors, thus improving the safety and reliability of the pipeline network.CONCLUSION: The new method of SCADA system screen configuration based on the oil and gas pipeline network model has achieved significant results in improving monitoring efficiency and reducing operational risks. Through a more intuitive and intelligent interface design, operators can have a more comprehensive understanding of the operating status of the pipeline network, which provides practical support for rapid response and decision-making. This approach introduces new ideas to the field of oil and gas pipeline network monitoring, which is of positive significance for improving the overall performance of the system. Future work can be carried out to optimize the interface design further and expand the applicable scenarios.
Publisher
European Alliance for Innovation n.o.
Reference20 articles.
1. A, J. K., A, M. G., & a, T. S. (2021). Digital game-based examination for sensor placement in the context of an Industry 4.0 lecture using the Unity 3D engine – a case study. 56, 26–45. 2. A, Q. F., A, J. L., & B, T. Z. H. L. (2022). Efficiency evaluation of China’s green investment in the “Belt and Road” countries. 74, 45–88. 3. Ali, S., Ijaola, A. O., & Asmatulu, E. (2021). Multifunctional water treatment system for oil and gas-produced water. Sustainable Water Resources Management, 7(6). https://doi.org/10.1007/s40899-021-00578-w 4. Al-Mishwat, A. T. (2021). Barrellite and Pillarrite: A Description and a Mode of Formation of a Novel Post-Sedimentary Twin Structures from As-Subbiyah, North of Kuwait Bay, Kuwait. International Journal of Earth Sciences, 007, 012. 5. Asare, Y. A., Kwasnicka, D., Powell, D., & Robinson, S. (2021). Health and well-being of rotation workers in the mining, offshore oil and gas, and construction industry: A systematic review. British Medical Journal Global Health, 6(7), e005112.
|
|