Computer Modeling and Parameter Estimation of Power Battery Performance for New Energy Vehicles under Hot Working Conditions

Author:

Zhang Hua

Abstract

With the aggravation of environmental pollution problems and the reduction of non-renewable energy sources such as oil, new energy vehicles have gradually become the focus of attention, and the application of their power batteries has become more and more widespread. The state of energy (SOE) of the power battery is an important basis for energy scheduling. Therefore, the study used computer technology to develop an analogous model of the power battery and evaluated its properties at various temperatures in order to precisely analyze the performance of the battery under thermal conditions. At the same time, to address the limitations in parameter estimation, the study uses the improved Kalman filter (KF) algorithm to optimize it. The results revealed that the estimation errors of the improved cubature Kalman filter (CKF) algorithm were reduced by 0.52%, 2.91% and 3.10% compared with the traditional CKF algorithm, EKF algorithm and UKF algorithm, respectively. In summary, the research on computer modeling and parameter estimation of the performance of new energy vehicle power batteries under hot working conditions provides important support and reference for the efficient operation and safety of new energy power batteries under hot working conditions.

Publisher

European Alliance for Innovation n.o.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3