Prediction of Intermittent Demand Occurrence using Machine Learning

Author:

Singh Ashish K,Simha J B,Agarwal Rashmi

Abstract

Demand forecasting plays a pivotal role in modern Supply Chain Management (SCM). It is an essential part of inventory planning and management and can be challenging at times. One of the major issues being faced in demand forecasting is insufficient forecast accuracy to predict the expected demand and fluctuation in actual vs. the predicted demand results in fore-casting errors. This problem is further exaggerated with slow-moving and intermittent demand items. Every organization encounters large proportions of items that have small ir-regular demand with long periods of zero demand, which are known as intermittent demand Items. Demand for such items occur sporadically and with considerable fluctuation in the size of the demand. Forecasting of the intermittent demand entails the prediction of demand series that is characterized by the time interval between demand being significantly greater than the unit forecast period. Because of this there are multiple periods of no demand in the intermittent demand time series. The challenge with these products with low irregular demand is that these items need to be stocked and replenished at regular interval irrespective of the demand cycle, thus adding to the cost of holding the inventory. Since the demand is not continuous, Traditional Forecasting models are unable to provide reliable estimate of required inventory level and replenishment point. Forecast errors would resulting in obsolescent stock or unfulfilled demand. The current paper presents a simple yet powerful approach for generating a demand forecasting and replenishment process for such low volume intermittent demand items to come up with a recommendation for dynamic re-order point, thus, improving the inventory performance of these items. Currently, the demand forecast is generally based on past usage patterns. The rise of Artificial Intelligence/Machine Learning (AI/ML) has provided a strong alternative to solve the problem of forecasting Intermittent Demand. The intention is to highlight that machine learning algorithm is more efficient and accurate than traditional forecasting method. As we move forward to industry 4.0, the digital supply chain is considered as the most essential com-ponent of the value chain wherein the inventory size is controlled, and the demand predicted.

Publisher

European Alliance for Innovation n.o.

Reference21 articles.

1. B. Adur Kannan, G. Kodi, O. Padilla, D. Gray, and B. C. Smith, “Forecasting spare parts sporadic demand using traditional methods and machine learning-a comparative study,” SMU Data Sci. Rev., vol. 3, no. 2, p. 9, 2020.

2. G. O. Kaya, M. Sahin, and O. F. Demirel, “Intermittent demand forecasting: a guideline for method selection,” Sadhana - Acad. Proc. Eng. Sci., vol. 45, no. 1, 2020, doi: 10.1007/s12046-020-1285-8.

3. Flowspace, “No Title.” https://www.flow.space/blog/inventory-carrying-costs/.

4. S. Axsater, Inventory Control - second edition. 2006.

5. T. M. Williams, “Stock Control with Sporadic and Slow-Moving Demand,” J. Oper. Res. Soc., 1984, [Online]. Available: https://link.springer.com/article/10.1057/jors.1984.185.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3