A Study of the Application of AI & ML to Climate Variation, with Particular Attention to Legal & Ethical Concerns

Author:

Joshi Maheshwari Narayan,Dixit Anil Kumar,Saxena Sagar,Memoria Minakshi,Choudhury Tanupriya,Sar Ayan

Abstract

INTRODUCTION: This research investigates the utilization of artificial intelligence and machine learning in comprehending various climatic variations, emphasizing the associated use of legal and ethical considerations. This escalating impact of climatic change necessitates innovative approaches and the potential of AI/ML to offer tools for analysis and prediction. OBJECTIVES: The primary objective here, was to assess the effectiveness of AI/ML in the deciphering of varying climatic patterns and projecting the future trends. Concurrently, this study aims for the identification and analysis of legal and ethical challenges that may arise from the integration of these technologies in climatic research and policy. METHODS: Here, the literature review forms the basis for understanding various AI/ML applications related to climate science. This study employs various case analyses to examine the existing models to gauge the accuracy and efficiency of predictions. Legal frameworks and ethical principles need to be scrutinized through the qualitative analysis of relevant policies and guidelines. RESULTS: This extensive research reveals the various significant contributions of AI/ML in the enhancement of climatic modeling precision and the prediction of extreme events. However legal and ethical considerations such as data privacy, accountability, and transparency also emerged as crucial challenges which required careful attention. CONCLUSION: While AI/ML exhibited great potential in the advancement of climate research, a balanced approach is imperative to navigate the associated legal and ethical concerns. Striking this equilibrium will be pivotal for ensuring responsible and effective deployment of these technologies in the pursuit of best understanding and mitigating varying climatic variations.

Publisher

European Alliance for Innovation n.o.

Reference30 articles.

1. Gupta, T., & Roy, S. (2020, September). A hybrid model based on fused features for detection of natural disasters from satellite images. In IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium (pp. 1699-1702). IEEE

2. Guha-Sapir D., Hoyois Ph., Below. R. (2016). Annual Disaster Statistical Review 2016: The Numbers and Trends. Brussels: CRED; 2016. p.91.

3. Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., & Shukla, P. R. (2022). Global Warming of 1.5 C: IPCC special report on impacts of global warming of 1.5 C above pre-industrial levels in context of strengthening response to climate change, sustainable development, and efforts to eradicate poverty. Cambridge University Press.

4. Arfanuzzaman, M. (2021). Harnessing artificial intelligence and big data for SDGs and prosperous urban future in South Asia. Environmental and sustainability indicators, 11, 100127.

5. Dhar, P. (2020). The carbon impact of artificial intelligence. Nat. Mach. Intell., 2(8), 423-425.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3