Gaming using different hand gestures using artificial neural network

Author:

S Prema,Deena G,D Hemalatha,K B Aruna,S Hashini

Abstract

INTRODUCTION: Gaming has evolved over the years, and one of the exciting developments in the industry is the integration of hand gesture recognition. OBJECTIVES: This paper proposes gaming using different hand gestures using Artificial Neural Networks which allows players to interact with games using natural hand movements, providing a more immersive and intuitive gaming experience. METHODS: Introduces two modules: recognition and analysis of gestures. The gesture recognition module identifies the gestures, and the analysis module assesses them to execute game controls based on the calculated analysis. RESULTS: The main results obtained in this paper are enhanced accessibility, higher accuracy and improved performance. CONCLUSION: To communicate with any of the traditional systems, physical contact is necessary. In the hand gesture recognition system, the same functionality can be interpreted by gestures without requiring physical contact with the interfaced devices.

Publisher

European Alliance for Innovation n.o.

Reference14 articles.

1. Akula G, Shitanshu R, Aditya D. Playing Games Using Hand Gesture Recognition. International Research Journal of Modernization in Engineering Technology and Science.2022; Vol. 04, pp.662-668.

2. Tanay T, Vidya B. Hand Gesture Controlled Gaming Application. International Research Journal of Engineering and Technology (IRJET). 2021; Vol. 8, No. 4, pp. 3654.

3. Ahmed S, Ali A. A Comparative Study of Hand-Gesture Recognition Devices for Games. National Science Foundation government Journal.2020; pp. 397-402.

4. Kanishk C, Khushboo S, Mahak S, Mayank S. Gesture Recognition using OpenCV. International Journal of Advanced Networking Applications (IJANA).2018; Vol. 5, No. 4, pp. 3528.

5. Perez D, Samothrakis S, Togelius J, Schaul T, Lucas S. The 2014 general video game playing competition. IEEE Transactions on Computational Intelligence and AI in Games.2016; Vol. 8, No. 3, pp. 229.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3