Age Based Content Controlling System Using AI for Children

Author:

Sangeetha T,Mythili K,P Prakasham,S Ragul Balaji

Abstract

Age detection has gotten a lot of attention in recent years because it is being used in more and more sectors. Regulations and norms imposed by the government, security measures, interactions between humans and computers, etc. Facial features and fingerprints are two of the most common human characteristics that may shift or alter throughout time. The nose, on the other hand, maintains a consistent structure that does not alter with the passage of time and possesses the singular capacity to fulfil the prerequisites of biometric attributes. This study gives a comprehensive review of how deep learning algorithms may be used to easily extract aspects of the human nose. In specifically, convolutional neural networks, also known as CNNs, are utilised for the purpose of feature extraction and classification when applied to big datasets that have numerous layers. The proposed methodology collects more private children's datasets, which contributes to a rise in the total number of datasets, which ultimately results in a rise in the 98.83 percent accuracy achieved. The results of this survey may be used to limit the material that is shared on social media by determining the age range of the participants, from under 18 to 18 and older.

Publisher

European Alliance for Innovation n.o.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3