Improving Performance of the Typical User in the Indoor Cooperative NOMA Millimeter Wave Networks with Presence of Walls

Author:

Lam Sinh Cong,Tran Xuan Nam

Abstract

INTRODUCTION: The beyond 5G millimeter wave cellular network system is expecting to provide the high quality of service in indoor areas. OBJECTIVES: Due to the high density of obstacles, the cooperative communication technique is employed to improve the user's desired signal power by finding more than one appropriate station to serve that user. METHODS: While the conventional system utilizes additional equipment such as Reconfigurable Intelligent Surfaces (RIS) and relays to enable the cooperative features, the paper introduces a new network paradigm that utilizes the second nearest Base Station (BS) of the typical user as the Decode and Forward (DF) relay. Thus, depends on the success of decoding the message from the user' serving BS of the second nearest BS, the typical user can work with and without assistance from the relay whose operation follows the discipline of the power-domain NOMA technique. In the case of with relay assistance, the Maximum Ratio Combining technique is utilized by the typical user to combine the desired signals. RESULTS: To examine the performance of the proposed system, the Nakagami-m and the newly developed path loss model, which considers the density of walls and their properties, are adopted to derive the coverage probability of the user with and without relay assistance. The closed-form expressions of this performance metric are derived by Gauss quadrature and Welch-Satterthwaite approximation.

Publisher

European Alliance for Innovation n.o.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3