Real Time Lung Cancer Classification with YOLOv5

Author:

Makhdoomi Shaif Mehraj,Khosla Cherry,Pande Sagar Dhanaraj

Abstract

Cancer must be appropriately categorized for effective diagnosis and treatment. Deep learning algorithms have shown tremendous promise in recent years for automating cancer classification. We used the deep learning system YOLOv5 to classify the four types of lung cancer in this study: big cell carcinoma, adenocarcinoma, normal lung tissue, and squamous cell carcinoma. We trained the YOLOv5 model using a publicly available database of lung cancer pictures. The dataset was divided into four categories: big cell carcinoma, adenocarcinoma, normal lung tissue, and squamous cell cancer. In addition, we compared YOLOv5's performance to older models such as SVM, RF, ANN, and CNN. The comparison found that YOLOv5 outperformed all these models, indicating its potential for the development of more accurate and efficient autonomous cancer classification systems. Conclusions from the research have important implications for cancer identification and therapy. Automatic cancer classification systems have the potential to increase the accuracy and efficacy of cancer detection, perhaps leading to better patient outcomes. The accuracy and speed of these systems can be enhanced by using deep learning techniques like YOLOv5, making them more effective for clinical applications. Our study's findings demonstrated high accuracy for every class, with a total accuracy of 97.77%. With the aid of accuracy, train loss, and test loss graphs, we assessed the model's performance. The graphs demonstrated how the model was able to gain knowledge from the data and increase its accuracy as it was being trained. The study's findings were also compiled in a table that gave a thorough assessment of each class's accuracy.

Publisher

European Alliance for Innovation n.o.

Subject

Health Informatics,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3