Skin Disease Classification Using CNN Algorithms

Author:

Agarwal Raghav,Godavarthi Deepthi

Abstract

  INTRODUCTION: Dermatological disorders, particularly human skin diseases, have become more common in recent decades. Environmental factors, socioeconomic problems, a lack of a balanced diet, and other variables have all contributed to an increase in skin diseases in recent years. Skin diseases can cause psychological suffering in addition to physical injury, especially in people with scarred or disfigured faces. OBJECTIVES: The use of artificial intelligence or computer-based technologies in the detection of face skin disorders has advanced dramatically over time. Even for highly experienced doctors and dermatologists, identifying skin disorders can be tricky since many skin diseases have a visual affinity with the surrounding skin and lesions. METHODS: Today, the majority of skincare specialists rely on time-consuming, traditional methods to identify disorders. Even though several research have demonstrated promising results on the picture classification job, few studies compare well-known deep learning models with various metrics for categorizing human skin disorders. RESULTS: This study examines and contrasts various skin illnesses in terms of cosmetics and common skin concerns. Our dataset includes over 25000 of the eight most common skin disorders. Convolutional neural networks have shown imaging performance that is comparable to or greater than that of humans. We used 11 different network algorithms to identify the illnesses in the sample and compared the results. CONCLUSION: To adjust the format of incoming photographs, we do certain image pre-processing and image scaling for each model. ResNet152 beat other deep learning methods in terms of recall, accuracy, and precision on a test dataset of 1930 images.

Publisher

European Alliance for Innovation n.o.

Subject

Health Informatics,Computer Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A hybrid CNN with transfer learning for skin cancer disease detection;Medical & Biological Engineering & Computing;2024-05-18

2. Clinical Support System for Cardiovascular Disease Forecasting Using ECG;EAI Endorsed Transactions on Pervasive Health and Technology;2024-03-18

3. Automated Life Stage Classification of Malaria Using Deep Learning;EAI Endorsed Transactions on Pervasive Health and Technology;2024-03-15

4. Application of Several Transfer Learning Approach for Early Classification of Lung Cancer;EAI Endorsed Transactions on Pervasive Health and Technology;2024-03-15

5. Multi-Class Kidney Abnormalities Detecting Novel System Through Computed Tomography;IEEE Access;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3