An Ensemble Models for the Prediction of Sickle Cell Disease from Erythrocytes Smears

Author:

Ayoade Oluwafisayo BabatopeORCID,Oladele Tinuke Omolewa,Lucky Imoize Agbotiname,Adeloye Jerome Adetoye,Awotunde Joseph Bambidele,Olorunyomi Segun Omotayo,Faboya Oulsola Theophilius,Idowu Ayorinde Oladele

Abstract

INTRODUCTION: The human blood as a collection of tissues containing Red Blood Cells (RBCs), circular in shape and acting as an oxygen carrier, are frequently deformed by multiple blood diseases inherited from parents. These hereditary diseases of blood involve abnormal haemoglobin (Hb) or anemia which are major public health issues. Sickle Cell Disease (SCD) is one of the common non-communicable disease and genetic disorder due to changes in hematological conditions of the RBCs which often causes the inheritance of mutant Hb genes by the patient.. OBJECTIVES: The process of manual valuation, predictions and diagnosis of SCD necessitate for a passionate time spending and if not done properly can lead to wrong predictions and diagnosis. Machine Learning (ML), a branch of AI which emphases on building systems that improve performance based on the data they consume is appropriate. Despite previous research efforts in predicting with single ML algorithm, the existing systems still suffer from high false and wrong predictions. METHODS: Thus, this paper aimed at performing comparative analysis of individual ML algorithms and their ensemble models for effective predictions of SCD (elongated shapes) in erythrocytes blood cells. Three ML algorithms were selected, and ensemble models were developed to perform the predictions and metrics were used to evaluate the performance of the model using accuracy, sensitivity, Receiver Operating Characteristics-Area under Curve (ROC-AUC) and F1 score metrics. The results were compared with existing literature for model(s) with the best prediction metrics performance.. RESULTS: The analysis was carried out using Python programming language. Individual ML algorithms reveals that their accuracies show MLR=87%, XGBoost=90%, and RF=93%, while hybridized RF-MLR=92% and RF-XGBoost=99%. The accuracy of RF-XGBoost of 99% outperformed other individual ML algorithms and Hybrid models. CONCLUSION: Thus, the study concluded that involving hybridized ML algorithms in medical datasets increased predictions performance as it removed the challenges of high variance, low accuracy and feature noise and biases of medical datasets. The paper concluded that ensemble classifiers should be considered to improve sickle cell disease predictions.

Publisher

European Alliance for Innovation n.o.

Subject

Health Informatics,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3