Breast cancer early detection in TP53 SNP protein sequences based on a new Convolutional Neural Network model

Author:

Ben Nasr Saifeddine,Messaoudi Imen,Elloumi Oueslati Afef,Lachiri Zied

Abstract

INTRODUCTION: Breast cancer (BC) is the most commonly occurring cancer and the second leading cause for women’s disease death. The BC cases are associated with genital mutations which are inherited from older generations or acquired overtime. If the diagnosis is done at the first stage, effects associated with certain treatments can be limited, costs can be saved and the diagnostic time can be minimized. This can also help specialists target the best treatment to increase the rate of cures. Nevertheless, its discovery in patients is very challenging due to silent symptoms aside from the fact the routine screening is not recommended for women under 40 years old.OBJECTIVES: Several efforts are aimed at the BC early detection using machine and deep learning systems. The proposed algorithms use different data types to distinguish between cancerous and non-cancerous cases; as: mammography, ultrasound and MRI (magnetic resonance imaging) images. Then, different learning tools were applied on this data for the classification task. Despite the classification rates which exceed 90%, the major drawback of all these methods is that they are applicable only after the appearance of the cancerous tumors, which reduces the cure rates.METHODS: We propose a new technique for early breast cancer screening. For the data, we focus on cancerous and non-cancerous SNP (Single Nucleotide Polymorphism) protein sequences of the TP53 gene in chromosome 17. This gene is shown to be linked to different single amino acid mutations on which we will shed light here. The method we propose transforms SNP textual sequences into digital vectors via coding. Then, RGB scalogram images are generated using the continuous wavelet transform. A pretreatment of color coefficients is applied to scalograms aiming at creating four different databases. Finally, a CNN deep learning network is used for the binary classification of cancerous and non-cancerous images.RESULTS: During the validation process, we reached good performance with specificity of 97.84%, sensitivity of 96.45%, an overall accuracy of 95.29% and an equal run time of 12 minutes 3 seconds. These values ensure the efficiency of our method.To enhance more these results, we used the ORB feature detection technique. Consequently, the classification rates have been improved to reach 95.9% as accuracyCONCLUSION: Our method will allow significant savings time and lives by detecting the disease in patients whose genetic mutations are beginning to appear.

Publisher

European Alliance for Innovation n.o.

Subject

Health Informatics,Computer Science (miscellaneous)

Reference48 articles.

1. https://www.who.int/news-room/fact-sheets/detail/breast-cancer.

2. https://www.cdc.gov/cancer/breast/basic_info/index.htm.

3. https://www.breastcancer.org/research-news/chemical-exposure-early-in-life-increases-risk.

4. Nkondjock, A. and Ghadirian, P. (2005) Facteurs de risque du cancer du sein. médecine/sciences 21(2): 175–180.

5. www2.le.ac.uk/projects/vgec/highereducation/topics/dna-genesprotectdiscretionary{char hyphencharfont}{}{}chromosomes/resources.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3