Design Method for Travel E-commerce Platform Based on HHO imparoved K-means Clustering Algorithm

Author:

Dang Mihua,Yang Suiming

Abstract

Convenient and intelligent tourism product recommendation method, as the key technology of tourism E-commerce platform design, not only provides academic value to the research of tourism E-commerce platform, but also improves the efficiency of personalized recommendation of tourism products. In order to improve the quality of tourism recommendation, this paper proposes a tourism E-commerce platform design method based on HHO improved K-means clustering algorithm. Firstly, the Harris optimization algorithm is used to improve the K-means algorithm to construct a user-oriented tourism product recommendation strategy; then, combined with the XGBoost algorithm, an item-oriented tourism product recommendation strategy is proposed; secondly, the two strategies are mixed to construct a personalized tourism product recommendation model. Finally, the effectiveness of the proposed method is verified by simulation experiment analysis. The results show that the recommendation accuracy of the tourism E-commerce platform design method proposed in this paper reaches more than 90%, and the recommendation response time meets the real-time requirements, which can provide personalized tourism product recommendation for platform users and enhance the purchase of tourism products.

Publisher

European Alliance for Innovation n.o.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3