A Realizable Data Encryption Strategy

Author:

Pranjali ,Ramisetty Srividya,Telagade Vani B,Adiga S Disha

Abstract

As technology continues to advance, data has become an increasingly important element in the sphere of Information Technology. However, enormous data generated by devices presents a major challenge in handling it in real time. Data encryption is a crucial component in ensuring data security and privacy during its transmission in network. Unfortunately, many applications disregard data encryption in order to achieve higher performance. The work proposes a solution to this problem by introducing a data encryption process that is, the Realizable Data Encryption Strategy (RDES) and Deoxyribonucleic Acid (DNA) computing, a revolutionary cryptographic method that improves information security by preventing authorized access to sensitive data, being used. Information security is improved by DNA symmetric cryptography being suggested. The outcomes show that plain-text encryption is a very secure procedure. The RDES approach is designed to improve privacy protection within the constraints of real-time processing. By implementing the RDES approach, data privacy and security can be significantly enhanced without compromising performance.

Publisher

European Alliance for Innovation n.o.

Reference20 articles.

1. Sumit V T, Ritukar, Murthy B, Jagadish K S. Privacy-Preserving Data Encryption Strategy for Big Data in Mobile Cloud Computing Environment. International Journal of Innovative Research in Science, Engineering and Technology,2018. Vol. 7.

2. Vikram, A., Kalaivani, S., & Gopinath. G. A Novel Encryption Algorithm based on DNA Cryptography. Proceedings of International Conference on Communication and Electronics Systems (ICCES). 17-19 July 2019, Coimbatore, India.IEEE, 20 February 2020.

3. Shantha R, Mahender K, Jenifer A: Security analysis of hybrid one time password generation algorithm for IoT data. AIP Conference Proceedings. 2022; 2418:1-10.

4. Balasubramaniam S, Joe V, Sivakumar TA: Optimization Enabled Deep Learning-Based DDoS Attack Detection in Cloud Computing. International Journal of Intelligent Systems. 2023; 2023:1-14.

5. Guo. S, Guo. M, Zhou. W, Yu. A workable architecture for IP traceback using dynamically stochastic session tagging. IEEE Transactions on Computers, 2016. pp. 1418–1427.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3